
ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math. LEL

Prof. Hiren Patel, Ph.D.

Prof. Werner Dietl, Ph.D.

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

Some rights reserved.

Reference variables,
pass-by-reference and

return-by-reference

2
Reference variables, pass-by-reference and return-by-reference

Outline

• In this lesson, we will:

– Learn about reference variables

• Aliases to other assignable items (lvalues)

– See how to use this for pass-by-reference

• Changing arguments—not parameters—inside of functions

– Useful for updating arguments that hold values

– We will also see return-by-reference

3
Reference variables, pass-by-reference and return-by-reference

Definition

• An alias is another name for a person or something

– Sometimes written a.k.a. for also-known-as

– Mark Twain is an alias for Samuel Langhorne Clemens

– Charles Lutwidge Dodgson, a.k.a. Lewis Carroll, was a mathematician

• An alias in a programming language is one identifier that is another
name for a different identifier

4
Reference variables, pass-by-reference and return-by-reference

Reference local variables

• Aliases in C++ are through references variables
typename &new_identifier{ existing_identifier };

– Reference variables must be initialized

– Whatever they are initialized to must be assignable

• It must be able to be the left-hand side of an assignment operator

• Anything that can be assigned to is also called an lvalue

• Whenever the reference variable is read,

what lvalue it was initialized with is read

• Whenever the reference variable is assigned to,

whatever lvalue it was initialized with is assigned to

• An alias does not create a new local variable, parameter, etc.

– It simply gives another name for an existing identifier

5
Reference variables, pass-by-reference and return-by-reference

Reference local variables

• For example:
#include <iostream>

int main();

int main() {

int m{42};

int &n{m};

// Now, 'n' is an alias for 'm'

std::cout << "m = " << m << ", \tn = " << n << std::endl;

m = 91;

std::cout << "m = " << m << ", \tn = " << n << std::endl;

n = 360;

std::cout << "m = " << m << ", \tn = " << n << std::endl;

return 0;

}

Output:
m = 42, n = 42
m = 91, n = 91
m = 360, n = 360

6
Reference variables, pass-by-reference and return-by-reference

Reference local variables

• You could use this to simplify the appearance of your code
#include <iostream>

#include <cmath>

int main();

int main() {

double const &pi{ M_PI };

// From here on in, you can just use 'pi' instead of 'M_PI'

return 0;

}

This does not introduce a new local variable

M_PI is declared const,
so your reference must also be const

7
Reference variables, pass-by-reference and return-by-reference

Pass-by-value

• Notice that whenever we called a function,

the value of the argument was assigned to the parameter

– This leaves the argument unchanged
// Function definitions

void f(int k) {

k++;

std::cout << k << std::endl;

}

int main() {

int n{42};

f(42);

f(n);

f(n + 107);

std::cout << "n = " << n << std::endl;

return 0;

}

Output:
43
43
150
n = 42

8
Reference variables, pass-by-reference and return-by-reference

Pass-by-reference

• If a parameter is prefixed by an &,

the parameter is now an alias for the argument

– Now arguments are restricted to what can be assigned to

• That is, “lvalues”

– Any change to the parameter changes the value of the argument

9
Reference variables, pass-by-reference and return-by-reference

Pass-by-reference

• Example:

void reset(int &n);

void reset(int &n) {

n = 0;

}

• Any argument is passed by reference

– A change to the parameter n also changes the argument

int main() {

int k{ 42 };

reset(k);

std::cout << k << std::endl;

return 0;

}

Output:
0

10
Reference variables, pass-by-reference and return-by-reference

Pass-by-reference

• Only those items that can appear on the left-hand side of assignment
statements can be passed by reference:

int main() {

int k{42};

reset(k + 1);

std::cout << k << std::endl;

return 0;

}

example.cpp: In function 'int main()':
example.cpp:12:11: error: invalid initialization of non-const reference of type
'int&' from an rvalue of type 'int'
reset(k + 1);

^
example.cpp:6:6: error: in passing argument 1 of 'void reset(int&)'
void reset(int &n) {

^

11
Reference variables, pass-by-reference and return-by-reference

Pass-by-reference

• When you perform a std::cin statement,

the second operand is passed by reference

int main() {

int k;

std::cout << "Enter an integer: " << std::endl;

std::cin >> k;

std::cout << k << "*" << k << " = " << (k*k)

<< std::endl;

return 0;

}

12
Reference variables, pass-by-reference and return-by-reference

Application: multiple return values

• Suppose you need both the minimum and maximum of three values:
void min_max(int a, int b, int c, int &min, int &max) {

if (a < b) {

min = a;

max = b;

} else {

min = b;

max = a;

}

if (c < min) {

min = c;

} else if (c > max) {

max = c;

}

}

13
Reference variables, pass-by-reference and return-by-reference

Counting time

• Suppose we want to track and print time:

– You’d need three local variables storing

• Hours

• Minutes

• Seconds

– Each time a second reaches 60,

it must reset to 0 and increment the minutes

– Each time the minutes reaches 60,

it must reset to 0 and increment the hours

– Each time the hours reaches 13,

it must reset to 1,

but we increment the periods when we reach 12

– Two periods makes one day

10:57:43
10:57:44
10:57:45
10:57:46
10:57:47
10:57:48
10:57:49
10:57:50
10:57:51
10:57:52
10:57:53
10:57:54
10:57:55
10:57:56
10:57:57
10:57:58
10:57:59
10:58:00

⋮
1:44:18
1:44:19
1:44:20
1:44:21
1:44:22

14
Reference variables, pass-by-reference and return-by-reference

Counting time

int main() {

int hour{10};

int minute{57};

int second{42};

for (int k{0}; hour < 10000; ++k) {

++second;

if (second == 60) {

second = 0;

++minute;

if (minute == 60) {

minute = 0;

++hour;

if (hour == 13) {

hour = 1;

}

}

}

15
Reference variables, pass-by-reference and return-by-reference

Counting time
if (hour < 10) {

std::cout << " ";

}

std::cout << hour << ":";

if (minute < 10) {

std::cout << "0";

}

std::cout << minute << ":";

if (second < 10) {

std::cout << "0";

}

std::cout << second << std::endl;

}

return 0;

}

16
Reference variables, pass-by-reference and return-by-reference

Counting time

• Suppose you want to increment a variable that stores minutes or
seconds:

bool increment_minute_second(int &min_sec) {

if (min_sec == 59) {

min_sec = 0;

return true;

} else {

++min_sec;

return false;

}

}

17
Reference variables, pass-by-reference and return-by-reference

Counting time

• Suppose you want to increment a variable that stores hours:
bool increment_hour(int &hour) {

if (hour == 12) {

hour = 1;

return false;

} else {

++hour;

// Return 'true' if we reach 12 o'clock

return (hour == 12);

}

}

18
Reference variables, pass-by-reference and return-by-reference

Counting time

• While we’re at it, let’s print time nicely

– Hours may be prefixed by a space or " "

– Minutes and seconds may be prefixed by a "0"

std::string to_string(std::string prefix, int time) {

if (time < 10) {

return prefix + std::to_string(time);

} else {

return std::to_string(time);

}

}

These convert an int into a std::string.

Adding two std::string concatenates them.

3:30:00
4:01:57
12:00:00

19
Reference variables, pass-by-reference and return-by-reference

Counting time

• We can now use this to count time:
int main() {

// Count hours, minutes and seconds starting at 10:57:42

// breaking at 1:00

int hour{10};

int minute{57};

int second{42};

20
Reference variables, pass-by-reference and return-by-reference

Counting time

for (int k{0}; k < 10000; ++k) {

bool minute_passed{ increment_minute_second(second) };

if (minute_passed) {

bool hour_passed{ increment_minute_second(minute) };

if (hour_passed) {

increment_hour(hour);

}

}

std::cout << to_string(" ", hour) << ":"

<< to_string("0", minute) << ":"

<< to_string("0", second) << std::endl;

}

return 0;

}

21
Reference variables, pass-by-reference and return-by-reference

In this course…

• In this course, we will only use pass-by-reference

– We generally will not use reference variables

– It is possible to return-by-reference, but that is for another course

22
Reference variables, pass-by-reference and return-by-reference

Summary

• Following this lesson, you now

– Know how to create an alias or reference to another assignable
variable

– Understand that a parameter can be an alias to the argument

• This is know as pass-by-reference

– Are aware of numerous applications of pass-by-reference

• Returning more information than one return value allows

– Know that there is also a return-by-reference

23
Reference variables, pass-by-reference and return-by-reference

References

[1] No references?

24
Reference variables, pass-by-reference and return-by-reference

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

25
Reference variables, pass-by-reference and return-by-reference

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

